What is radioactive dating?

Radioactive dating is a method of dating rocks and minerals using radioactive isotopes. This method is useful for igneous and metamorphic rocks, which cannot be dated by the stratigraphic correlation method used for sedimentary rocks.

Over 300 naturally-occurring isotopes are known. Some do not change with time and form stable isotopes (i.e. those that form during chemical reactions without breaking down). The unstable or more commonly known radioactive isotopes break down by radioactive decay into other isotopes.

Radioactive decay is a natural process and comes from the atomic nucleus becoming unstable and releasing bits and pieces. These are released as radioactive particles (there are many types). This decay process leads to a more balanced nucleus and when the number of protons and neutrons balance, the atom becomes stable.

This radioactivity can be used for dating, since a radioactive 'parent' element decays into a stable 'daughter' element at a constant rate. The rate of decay (given the symbol λ) is the fraction of the 'parent' atoms that decay in unit time. For geological purposes, this is taken as one year. Another way of expressing this is the half-life period (given the symbol T). The half-life is the time it takes for half of the parent atoms to decay. The relationship between the two is: T = 0.693 / λ


How is this radioactivity measured?

Many different radioactive isotopes and techniques are used for dating. All rely on the fact that certain elements (particularly uranium and potassium) contain a number of different isotopes whose half-life is exactly known and therefore the relative concentrations of these isotopes within a rock or mineral can measure the age. For an element to be useful for geochronology (measuring geological time), the isotope must be reasonably abundant and produce daughter isotopes at a good rate.

Either a whole rock or a single mineral grain can be dated. Some techniques place the sample in a nuclear reactor first to excite the isotopes present, then measure these isotopes using a mass spectrometer (such as in the argon-argon scheme). Others place mineral grains under a special microscope, firing a laser beam at the grains which ionises the mineral and releases the isotopes. The isotopes are then measured within the same machine by an attached mass spectrometer (an example of this is SIMS analysis).


Stay in the know

Get our monthly emails for amazing animals, research insights and museum events.

Sign up today

What dating methods are there?



Terms

  • The atomic number of an element is given by the number of protons present within the element's nucleus, and this helps determine the chemical properties of that element.
  • The atomic mass of an element combines the number of protons and neutrons within its nucleus.
  • The atomic weight of an element is the average relative weight (mass) of atoms and can vary to give different isotopic members of the element.
  • Isotopes are atoms with the same atomic number (i.e. protons) and have different atomic masses (i.e. number of neutrons). For example, the element Potassium (represented by the symbol K) has three isotopes: Isotope 39K, 40K, 41K (Relative abundance in nature 93.1%, 0.01%, 6.9%). The numbers 39, 40, and 41 are the mass numbers. As all three isotopes have 19 protons, they all have the chemical properties of Potassium, but the number of neutrons differs: 20 in 39K, 21 in 40K, and 22 in 41K. Potassium has an atomic weight of 39.102, close to the mass (39) of its most abundant isotope in nature (39K).

Stay in the know

Get our monthly emails for amazing animals, research insights and museum events.

Sign up today